Measuring the ins and outflows of estuaries


A sunset casts pink hues onto clouds over the Strait of Juan de Fuca, one of three estuaries scientists modeled to determine how best to monitor total exchange flow. Credit: Suzette Delmage/NOAA, Public Domain

In coastal inlets such as bays and fjords, mixing of salt water and fresh water regulates many aspects of the local environment, from nutrient concentrations to oxygen levels and the composition of phytoplankton communities. Studying these areas is critical to our understanding of specialized ecosystems and ocean-land exchanges, but knowing how best to distribute monitoring instruments to capture a full picture of these dynamic environments is challenging.

In 2011, scientists began refining a framework called total exchange flow (TEF) for analyzing how water mixes in estuaries. Until recently, TEF had predominantly been used to model highly defined situations. But in a recent study published in the Journal of Geophysical Research: Oceans, Lemagie et al investigated realistic hydrodynamic models to predict the best way of using moored instruments to measure TEF in three large natural estuaries: San Diego Bay off Southern California, the Salish Sea and Strait of Juan de Fuca between British Columbia and Washington State, and the outlet of the Columbia River off Oregon and Washington.

The three locations represent very different types and shapes of estuaries. San Diego Bay is a shallow estuary that receives little rainfall; the Strait of Juan de Fuca is a relatively deep fjord; and the outlet of the Columbia River is a salt wedge, where fresh water flows outward atop inflowing salt water.

In each model, the researchers varied the lateral and vertical distribution of the instruments to identify the best configurations. Their results suggested that in all three cases, distributing three to four monitoring devices evenly across the estuary channel, with each measuring at one to five depths, could capture more than 90% of water exchange.

The findings are encouraging, the authors say, because they suggest that monitoring with a limited number of instruments is a feasible way to measure TEF in estuaries and better understand the water exchanges that regulate these complex ecosystems.

More information:
E. P. Lemagie et al, Measuring Estuarine Total Exchange Flow From Discrete Observations, Journal of Geophysical Research: Oceans (2022). DOI: 10.1029/2022JC018960

Provided by
American Geophysical Union


This story is republished courtesy of Eos, hosted by the American Geophysical Union. Read the original story here.

Citation:
Measuring the ins and outflows of estuaries (2022, November 8)
retrieved 8 November 2022
from https://phys.org/news/2022-11-ins-outflows-estuaries.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.




A sunset casts pink hues onto clouds over the Strait of Juan de Fuca, one of three estuaries scientists modeled to determine how best to monitor total exchange flow. Credit: Suzette Delmage/NOAA, Public Domain

In coastal inlets such as bays and fjords, mixing of salt water and fresh water regulates many aspects of the local environment, from nutrient concentrations to oxygen levels and the composition of phytoplankton communities. Studying these areas is critical to our understanding of specialized ecosystems and ocean-land exchanges, but knowing how best to distribute monitoring instruments to capture a full picture of these dynamic environments is challenging.

In 2011, scientists began refining a framework called total exchange flow (TEF) for analyzing how water mixes in estuaries. Until recently, TEF had predominantly been used to model highly defined situations. But in a recent study published in the Journal of Geophysical Research: Oceans, Lemagie et al investigated realistic hydrodynamic models to predict the best way of using moored instruments to measure TEF in three large natural estuaries: San Diego Bay off Southern California, the Salish Sea and Strait of Juan de Fuca between British Columbia and Washington State, and the outlet of the Columbia River off Oregon and Washington.

The three locations represent very different types and shapes of estuaries. San Diego Bay is a shallow estuary that receives little rainfall; the Strait of Juan de Fuca is a relatively deep fjord; and the outlet of the Columbia River is a salt wedge, where fresh water flows outward atop inflowing salt water.

In each model, the researchers varied the lateral and vertical distribution of the instruments to identify the best configurations. Their results suggested that in all three cases, distributing three to four monitoring devices evenly across the estuary channel, with each measuring at one to five depths, could capture more than 90% of water exchange.

The findings are encouraging, the authors say, because they suggest that monitoring with a limited number of instruments is a feasible way to measure TEF in estuaries and better understand the water exchanges that regulate these complex ecosystems.

More information:
E. P. Lemagie et al, Measuring Estuarine Total Exchange Flow From Discrete Observations, Journal of Geophysical Research: Oceans (2022). DOI: 10.1029/2022JC018960

Provided by
American Geophysical Union


This story is republished courtesy of Eos, hosted by the American Geophysical Union. Read the original story here.

Citation:
Measuring the ins and outflows of estuaries (2022, November 8)
retrieved 8 November 2022
from https://phys.org/news/2022-11-ins-outflows-estuaries.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

FOLLOW US ON GOOGLE NEWS

Read original article here

Denial of responsibility! Techno Blender is an automatic aggregator of the all world’s media. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, all materials to their authors. If you are the owner of the content and do not want us to publish your materials, please contact us by email – admin@technoblender.com. The content will be deleted within 24 hours.
estuariesinsLatestMeasuringoutflowsScienceTechnoblender
Comments (0)
Add Comment