Techno Blender
Digitally Yours.

Nvidia Aims to Bridge the GPU and Quantum Computing Realms via cuQuantum

0 91


Nvidia is accelerating its efforts to bridge the GPU and quantum computing realms through cuQuantum, its Tensor-capable (opens in new tab)quantum simulation toolkit. Through it, the company aims to accelerate quantum circuit simulation workloads in ways that are beyond the reach of today’s NISQ (Noisy Intermediate-Scale Quantum) systems. But for that to happen, the company is betting on further integration between quantum and classical systems towards hybrid solutions. Unsurprisingly, GPUs are at the forefront of Nvidia’s quantum developments.

(Image credit: Nvidia)

Nvidia has set its sights on creating a low-latency connection that can link its GPUs – and their quantum-simulation-capable Tensor cores – with current and upcoming QPUs (Quantum Processing Units). The aim here is to take advantage of GPU’s immensely powerful parallel processing, leveraging them for quantum-specific workloads such as circuit optimization, calibration, and error correction, while lifting the communications bottleneck between quantum and classical systems.


Nvidia is accelerating its efforts to bridge the GPU and quantum computing realms through cuQuantum, its Tensor-capable (opens in new tab)quantum simulation toolkit. Through it, the company aims to accelerate quantum circuit simulation workloads in ways that are beyond the reach of today’s NISQ (Noisy Intermediate-Scale Quantum) systems. But for that to happen, the company is betting on further integration between quantum and classical systems towards hybrid solutions. Unsurprisingly, GPUs are at the forefront of Nvidia’s quantum developments.

Nvidia cuQuantum

(Image credit: Nvidia)

Nvidia has set its sights on creating a low-latency connection that can link its GPUs – and their quantum-simulation-capable Tensor cores – with current and upcoming QPUs (Quantum Processing Units). The aim here is to take advantage of GPU’s immensely powerful parallel processing, leveraging them for quantum-specific workloads such as circuit optimization, calibration, and error correction, while lifting the communications bottleneck between quantum and classical systems.

FOLLOW US ON GOOGLE NEWS

Read original article here

Denial of responsibility! Techno Blender is an automatic aggregator of the all world’s media. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, all materials to their authors. If you are the owner of the content and do not want us to publish your materials, please contact us by email – [email protected]. The content will be deleted within 24 hours.

Leave a comment