Techno Blender
Digitally Yours.

Scientists Discover New State of Matter With Chiral Properties

0 24


Researchers have identified a novel quantum state of matter with chiral currents, potentially revolutionizing electronics and quantum technologies. This breakthrough, confirmed through direct observation using the Italian Elettra synchrotron, holds vast applications in sensors, biomedicine, and renewable energy. Credit: SciTechDaily.com

An international research group has identified a novel state of matter, characterized by the presence of a quantum phenomenon known as chiral current.

These currents are generated on an atomic scale by a cooperative movement of electrons, unlike conventional magnetic materials whose properties originate from the quantum characteristic of an electron known as spin and their ordering in the crystal.

The Importance of Chirality

Chirality is a property of extreme importance in science, for example, it is fundamental also to understand DNA. In the quantum phenomenon discovered, the chirality of the currents was detected by studying the interaction between light and matter, in which a suitably polarized photon can emit an electron from the surface of the material with a well-defined spin state.

The discovery, published in Nature, significantly enriches our knowledge of quantum materials, of the search for chiral quantum phases, and of the phenomena that occur at the surface of materials.

Potential Applications and Implications

“The discovery of the existence of these quantum states,” explains Federico Mazzola, researcher in Condensed matter physics at Ca’ Foscari University of Venice and leader of the research, “may pave the way for the development of a new type of electronics that employs chiral currents as information carriers in place of the electron’s charge. Furthermore, these phenomena could have an important implication for future applications based on new chiral optoelectronic devices, and a great impact in the field of quantum technologies for new sensors, as well as in the biomedical and renewable energy fields.”

Discovery and Verification

Born from a theoretical prediction, this study directly and for the first time verified the existence of this quantum state, until now enigmatic and elusive, thanks to the use of the Italian Elettra synchrotron. Until now, knowledge about the existence of this phenomenon was in fact limited to theoretical predictions for some materials. Its observation on the surfaces of solids makes it extremely interesting for the development of new ultra-thin electronic devices.

The research group, which includes national and international partners including the Ca’ Foscari University of Venice, the Spin Institute the CNR Materials Officina Institute, and the University of Salerno, investigated the phenomenon of a material already known to the scientific community for its electronic properties and for superconducting spintronics applications, but the new discovery has a broader scope, being much more general and applicable to a vast range of quantum materials.

These materials are revolutionizing quantum physics and the current development of new technologies, with properties that go far beyond those described by classical physics.

Reference: “Signatures of a surface spin–orbital chiral metal” by Federico Mazzola, Wojciech Brzezicki, Maria Teresa Mercaldo, Anita Guarino, Chiara Bigi, Jill A. Miwa, Domenico De Fazio, Alberto Crepaldi, Jun Fujii, Giorgio Rossi, Pasquale Orgiani, Sandeep Kumar Chaluvadi, Shyni Punathum Chalil, Giancarlo Panaccione, Anupam Jana, Vincent Polewczyk, Ivana Vobornik, Changyoung Kim, Fabio Miletto-Granozio, Rosalba Fittipaldi, Carmine Ortix, Mario Cuoco and Antonio Vecchione, 7 February 2024, Nature.
DOI: 10.1038/s41586-024-07033-8




Quantum Physics Particle Spin

Researchers have identified a novel quantum state of matter with chiral currents, potentially revolutionizing electronics and quantum technologies. This breakthrough, confirmed through direct observation using the Italian Elettra synchrotron, holds vast applications in sensors, biomedicine, and renewable energy. Credit: SciTechDaily.com

An international research group has identified a novel state of matter, characterized by the presence of a quantum phenomenon known as chiral current.

These currents are generated on an atomic scale by a cooperative movement of electrons, unlike conventional magnetic materials whose properties originate from the quantum characteristic of an electron known as spin and their ordering in the crystal.

The Importance of Chirality

Chirality is a property of extreme importance in science, for example, it is fundamental also to understand DNA. In the quantum phenomenon discovered, the chirality of the currents was detected by studying the interaction between light and matter, in which a suitably polarized photon can emit an electron from the surface of the material with a well-defined spin state.

The discovery, published in Nature, significantly enriches our knowledge of quantum materials, of the search for chiral quantum phases, and of the phenomena that occur at the surface of materials.

Potential Applications and Implications

“The discovery of the existence of these quantum states,” explains Federico Mazzola, researcher in Condensed matter physics at Ca’ Foscari University of Venice and leader of the research, “may pave the way for the development of a new type of electronics that employs chiral currents as information carriers in place of the electron’s charge. Furthermore, these phenomena could have an important implication for future applications based on new chiral optoelectronic devices, and a great impact in the field of quantum technologies for new sensors, as well as in the biomedical and renewable energy fields.”

Discovery and Verification

Born from a theoretical prediction, this study directly and for the first time verified the existence of this quantum state, until now enigmatic and elusive, thanks to the use of the Italian Elettra synchrotron. Until now, knowledge about the existence of this phenomenon was in fact limited to theoretical predictions for some materials. Its observation on the surfaces of solids makes it extremely interesting for the development of new ultra-thin electronic devices.

The research group, which includes national and international partners including the Ca’ Foscari University of Venice, the Spin Institute the CNR Materials Officina Institute, and the University of Salerno, investigated the phenomenon of a material already known to the scientific community for its electronic properties and for superconducting spintronics applications, but the new discovery has a broader scope, being much more general and applicable to a vast range of quantum materials.

These materials are revolutionizing quantum physics and the current development of new technologies, with properties that go far beyond those described by classical physics.

Reference: “Signatures of a surface spin–orbital chiral metal” by Federico Mazzola, Wojciech Brzezicki, Maria Teresa Mercaldo, Anita Guarino, Chiara Bigi, Jill A. Miwa, Domenico De Fazio, Alberto Crepaldi, Jun Fujii, Giorgio Rossi, Pasquale Orgiani, Sandeep Kumar Chaluvadi, Shyni Punathum Chalil, Giancarlo Panaccione, Anupam Jana, Vincent Polewczyk, Ivana Vobornik, Changyoung Kim, Fabio Miletto-Granozio, Rosalba Fittipaldi, Carmine Ortix, Mario Cuoco and Antonio Vecchione, 7 February 2024, Nature.
DOI: 10.1038/s41586-024-07033-8

FOLLOW US ON GOOGLE NEWS

Read original article here

Denial of responsibility! Techno Blender is an automatic aggregator of the all world’s media. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, all materials to their authors. If you are the owner of the content and do not want us to publish your materials, please contact us by email – [email protected]. The content will be deleted within 24 hours.

Leave a comment