Techno Blender
Digitally Yours.

NASA’s Starling CubeSats Succeed in Autonomous Navigation Test

0 11


NASA’s Starling mission will test new technologies for autonomous swarm navigation on four CubeSats in low-Earth orbit. Credit: Blue Canyon Technologies/NASA

NASA’s Starling mission successfully tested autonomous navigation in space using “star tracker” sensors, paving the way for more accurate orbital predictions in the StarFOX experiment.

NASA’s Starling mission accomplished a significant objective for the StarFOX (Starling Formation-Flying Optical Experiment) experiment, a test of autonomous navigation, co-location, and situational awareness in space.

Using downlinked images from onboard “star tracker” sensors, the team used ground-based software to demonstrate StarFOX’s ability to autonomously differentiate the background field of stars and other orbiting spacecraft from fellow members of the Starling swarm.

The spacecraft captured one photo every minute, and despite inconsistencies in illumination and minimal relative motion, the software was able to use the angular positions of the other Starling satellites within those images to estimate their orbits accurately with respect to GPS measurements captured during the test.

The next step is to demonstrate this software in orbit with similar results, autonomously correcting orbit predictions over time as each photo provides more data about the trajectory of spacecraft in the swarm.

StarFOX is being led by Stanford University’s Space Rendezvous Laboratory.




NASA Starling Mission

NASA’s Starling mission will test new technologies for autonomous swarm navigation on four CubeSats in low-Earth orbit. Credit: Blue Canyon Technologies/NASA

NASA’s Starling mission successfully tested autonomous navigation in space using “star tracker” sensors, paving the way for more accurate orbital predictions in the StarFOX experiment.

NASA’s Starling mission accomplished a significant objective for the StarFOX (Starling Formation-Flying Optical Experiment) experiment, a test of autonomous navigation, co-location, and situational awareness in space.

Using downlinked images from onboard “star tracker” sensors, the team used ground-based software to demonstrate StarFOX’s ability to autonomously differentiate the background field of stars and other orbiting spacecraft from fellow members of the Starling swarm.

The spacecraft captured one photo every minute, and despite inconsistencies in illumination and minimal relative motion, the software was able to use the angular positions of the other Starling satellites within those images to estimate their orbits accurately with respect to GPS measurements captured during the test.

The next step is to demonstrate this software in orbit with similar results, autonomously correcting orbit predictions over time as each photo provides more data about the trajectory of spacecraft in the swarm.

StarFOX is being led by Stanford University’s Space Rendezvous Laboratory.

FOLLOW US ON GOOGLE NEWS

Read original article here

Denial of responsibility! Techno Blender is an automatic aggregator of the all world’s media. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, all materials to their authors. If you are the owner of the content and do not want us to publish your materials, please contact us by email – [email protected]. The content will be deleted within 24 hours.

Leave a comment