Techno Blender
Digitally Yours.

Time Reversal Photonics Experiment Resolves Quantum Paradox

0 39


A team of researchers from the University of Twente has successfully illustrated that quantum mechanics and thermodynamics can coexist by using an optical chip with photon channels. The channels individually showed disorder in line with thermodynamics, while the overall system complied with quantum mechanics due to the entanglement of subsystems, proving that information can be preserved and transferred. Credit: University of Twente

It seems quantum mechanics and thermodynamics cannot be true simultaneously. In a new publication, University of Twente researchers use photons in an optical chip to demonstrate how both theories can be true at the same time.

In quantum mechanics, time can be reversed and information is always preserved. That is, one can always find back the previous state of particles. It was long unknown how this could be true at the same time as thermodynamics. There, time has a direction and information can also be lost. “Just think of two photographs that you put in the sun for too long, after a while you can no longer distinguish them,” explains author Jelmer Renema.

There was already a theoretical solution to this quantum puzzle and even an experiment with atoms, but now the University of Twente (UT) researchers have also demonstrated it with photons. “Photons have the advantage that it is quite easy to reverse time with them,” explains Renema. In the experiment, the researchers used an optical chip with channels through which the photons could pass. At first, they could determine exactly how many photons there were in each channel, but after that, the photons shuffled positions.

Entanglement of subsystems

“When we looked at the individual channels, they obeyed the laws of thermodynamics and built up disorder. Based on measurements on one channel, we didn’t know how many photons were still in that channel, but the overall system was consistent with quantum mechanics,” says Renema. The various channels – also known as subsystems – were entangled. The missing information in one subsystem ‘disappears’ to the other subsystem.

More information

Dr. Jelmer Renema is assistant professor in the Adaptive Quantum Optics research group. He is also one of the featured scientists at the University of Twente. He did the research with a team, including the research group of Prof. Dr. Jens Eisert of the Freie Universität Berlin, who played an important role in demonstrating the reversibility of the experiment. They recently published their article entitled ‘Quantum simulation of thermodynamics in an integrated quantum photonic processor’ in the scientific journal Nature Communications.

Reference: “Quantum simulation of thermodynamics in an integrated quantum photonic processor” by F. H. B. Somhorst, R. van der Meer, M. Correa Anguita, R. Schadow, H. J. Snijders, M. de Goede, B. Kassenberg, P. Venderbosch, C. Taballione, J. P. Epping, H. H. van den Vlekkert, J. Timmerhuis, J. F. F. Bulmer, J. Lugani, I. A. Walmsley, P. W. H. Pinkse, J. Eisert, N. Walk and J. J. Renema, 1 July 2023, Nature Communications.
DOI: 10.1038/s41467-023-38413-9




Photonics Experiment Resolves Quantum Paradox

A team of researchers from the University of Twente has successfully illustrated that quantum mechanics and thermodynamics can coexist by using an optical chip with photon channels. The channels individually showed disorder in line with thermodynamics, while the overall system complied with quantum mechanics due to the entanglement of subsystems, proving that information can be preserved and transferred. Credit: University of Twente

It seems quantum mechanics and thermodynamics cannot be true simultaneously. In a new publication, University of Twente researchers use photons in an optical chip to demonstrate how both theories can be true at the same time.

In quantum mechanics, time can be reversed and information is always preserved. That is, one can always find back the previous state of particles. It was long unknown how this could be true at the same time as thermodynamics. There, time has a direction and information can also be lost. “Just think of two photographs that you put in the sun for too long, after a while you can no longer distinguish them,” explains author Jelmer Renema.

There was already a theoretical solution to this quantum puzzle and even an experiment with atoms, but now the University of Twente (UT) researchers have also demonstrated it with photons. “Photons have the advantage that it is quite easy to reverse time with them,” explains Renema. In the experiment, the researchers used an optical chip with channels through which the photons could pass. At first, they could determine exactly how many photons there were in each channel, but after that, the photons shuffled positions.

Entanglement of subsystems

“When we looked at the individual channels, they obeyed the laws of thermodynamics and built up disorder. Based on measurements on one channel, we didn’t know how many photons were still in that channel, but the overall system was consistent with quantum mechanics,” says Renema. The various channels – also known as subsystems – were entangled. The missing information in one subsystem ‘disappears’ to the other subsystem.

More information

Dr. Jelmer Renema is assistant professor in the Adaptive Quantum Optics research group. He is also one of the featured scientists at the University of Twente. He did the research with a team, including the research group of Prof. Dr. Jens Eisert of the Freie Universität Berlin, who played an important role in demonstrating the reversibility of the experiment. They recently published their article entitled ‘Quantum simulation of thermodynamics in an integrated quantum photonic processor’ in the scientific journal Nature Communications.

Reference: “Quantum simulation of thermodynamics in an integrated quantum photonic processor” by F. H. B. Somhorst, R. van der Meer, M. Correa Anguita, R. Schadow, H. J. Snijders, M. de Goede, B. Kassenberg, P. Venderbosch, C. Taballione, J. P. Epping, H. H. van den Vlekkert, J. Timmerhuis, J. F. F. Bulmer, J. Lugani, I. A. Walmsley, P. W. H. Pinkse, J. Eisert, N. Walk and J. J. Renema, 1 July 2023, Nature Communications.
DOI: 10.1038/s41467-023-38413-9

FOLLOW US ON GOOGLE NEWS

Read original article here

Denial of responsibility! Techno Blender is an automatic aggregator of the all world’s media. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, all materials to their authors. If you are the owner of the content and do not want us to publish your materials, please contact us by email – [email protected]. The content will be deleted within 24 hours.

Leave a comment